Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5413, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443397

RESUMEN

Radioactive particles often contain very high radioactivity concentrations and are widespread. They pose a potential risk to human health and the environment. Their detection, quantification, and characterization are crucial if we are to understand their impact. Here, we present the use of a real-time autoradiography gaseous detector (using parallel ionization multiplier) to expedite and improve the accuracy of radioactive particle screening in complex environmental samples. First, standard particles were used to assess the detector capabilities (spatial resolution, spectrometry, and artefact contributions), then, we applied the technique to more complex and environmentally relevant samples. The real-time autoradiography technique provides data with a spatial resolution (≲100 µm) suitable for particle analysis in complex samples. Further, it can differentiate between particles predominantly emitting alpha and beta radiation. Here, the technique is applied to radioactive cesium-rich microparticles collected from the Fukushima Daiichi nuclear exclusion zone, showing their accurate detection, and demonstrating the viability of real-time autoradiography in environmental scenarios. Indeed, for more complex samples (radioactive particles in a less radioactive heterogeneous background mix of minerals), the technique permits relatively high selectivity for radioactive particle screening (up to 61.2% success rate) with low false positive percentages (~ 1%).

2.
J Environ Radioact ; 273: 107392, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342022

RESUMEN

The measurement of 226Ra and the identification of 226Ra-bearing minerals are important for studying the behavior of radium in the environment. Various instruments for measuring 226Ra are currently used: among the radiometric techniques that measure in bulk (no spatialization), there are gamma spectrometers and alpha spectrometers. Other instruments such as SEM-EDS can map the chemical elements thus providing information on the distribution of 226Ra, but are limited for ultra-trace analyses on natural geomaterials. Finally, autoradiography techniques can locate radioactivity, but are limited to the identification of the contribution of 226Ra when the 238U series is complete. This study focuses on spectroscopic autoradiography, a method for measuring both the energy of the alpha particle emissions and their positions on the autoradiograph. A gas detector based on a parallel ionization multiplier technology was used for this purpose. Alpha particle energy is dependent on the emitting radionuclides. In order to track the 226Ra, the energy spectrum of the 238U series was studied with modeling software. It appears possible to apply a thresholding on the energy spectrum to discriminate the 226Ra from the first alpha emitters of the 238U decay chain (i.e. 238U, 234U and 230Th, all below 5 MeV). The developed method was applied to a U-mill tailing sample prepared as a thin section. The sample was heterogeneous in terms of radioactivity and was not at secular equilibrium with 238U, as expected. The 226Ra was identified and localized, and different regions of interest were also analyzed with SEM-EDS elements cartography. This revealed 226Ra-rich barite (BaSO4) phases measured at 3 ppmRa on average and containing no uranium; and uranium in siderite (FeCO3), showing a strong 226Ra deficit compared with secular equilibrium. Spectroscopic autoradiography opens up possibilities for the analysis of heterogeneous geological samples containing natural alpha emitters such as 238U and 226Ra: the 226Ra can be localized and quantified at ultra-trace content, and the method developed can also identify newly (young) uranium phases by measuring 238U/226Ra activity disequilibrium.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Uranio , Autorradiografía , Uranio/análisis , Partículas alfa , Monitoreo de Radiación/métodos , Radioisótopos/análisis , Radio (Elemento)/análisis
3.
ACS Omega ; 8(25): 22523-22535, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396268

RESUMEN

Cesium-134 and -137 are prevalent, long-lived, radio-toxic contaminants released into the environment during nuclear accidents. Large quantities of insoluble, respirable Cs-bearing microparticles (CsMPs) were released into the environment during the Fukushima Daiichi nuclear accident. Monitoring for CsMPs in environmental samples is essential to understand the impact of nuclear accidents. The current detection method used to screen for CsMPs (phosphor screen autoradiography) is slow and inefficient. We propose an improved method: real-time autoradiography that uses parallel ionization multiplier gaseous detectors. This technique permits spatially resolved measurement of radioactivity while providing spectrometric data from spatially heterogeneous samples-a potential step-change technique for use after nuclear accidents for forensic analysis. With our detector configuration, the minimum detectable activities are sufficiently low for detecting CsMPs. Further, for environmental samples, sample thickness does not detrimentally affect detector signal quality. The detector can measure and resolve individual radioactive particles ≥465 µm apart. Real-time autoradiography is a promising tool for radioactive particle detection.

4.
Appl Radiat Isot ; 140: 228-237, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30059863

RESUMEN

A new approach is proposed in order to spatially localize and determine the equilibrium state of natural decay chains on hand-scale geological samples, thanks to a combination of three techniques: 1) Elementary chemical mapping by microprobe; 2) Alpha autoradiograph by gaseous detectors and 3) bulk alpha particle spectrometry. The quantitative nature of alpha autoradiograph and its comparison with U chemical maps allows to locate radioactive equilibrium state in four samples. This equilibrium state was confirmed by alpha spectrometry analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...